Hierarchical Sparse Vector Search & Recommendation
Two-Phase Term-Based Scoring for Explainable Ranking

Nithin Mani - Cosdata (www.cosdata.io)

2025-08-20

Contents

1_Abstractl

[2.2.1 Architectural Philosophy|. o oo oo

[2.2.2 Key Innovation: Two-Phase Processingl

[2.2.3 Operational Benefits| oo

[3 System Architecture|

3.1 Core Concepts| e

[3.1.1 Sparse Vector Representation with Term Decomposition|

<

[3.1.3 Multi-Level Entity Denormalization with Hierarchical Intelligence|

[3.1.4 'Two-Phase Processing Architecturel.

13.1.5 Multi-Level Entity Denormalization with Hierarchical Intelligence|

13.1.6 Mathematical Transparency Without Model Dependencies|.

[3.2.1 'Two-Phase Processing Architecture|.

[4 Feature Engineering] 10
4.1 Column-Value Decomposition and Intra-Field Scoringl 10
[41.1 Phase 1: Term Extractionl 0L 10
4.1.2 Phase 2: Intra-Field Score Distributionl 10

4.2 Hierarchical Feature Bixtractionl oo 10
[4.2.1 Level 1: Zone/Geographic Features|. 10
[4.2.2 Level 2: Business/Venue Features{. 11
[4.2.3 Level 3: Product/Item Features|. 11

4.3 Intra-Field Scoring Methodology|lo o oo 11
4.3.1 Power Law Distribution Rationalel 11
[4.3.2 Scoring Algorithm Implementationl 00000 11
4.3.3 Field-Specific Considerations|, 11

[5 Food Delivery Application Example) 12
b.1 Entity Hierarchy| 12
[5.1.1 Zones (Level 1) - Domain-Specific Implementation| 12
[5.1.2 Restaurants (Level 2)]o o o oo oo oo 12
[5.1.3 Dishes (Level 3)l 12

[5.2 Feature Representation Examples|. o000 12
9.2.1 Restaurant Metadata Processing| 12
15.2.2 Dish Metadata Processing| 13

b.3 Query Processing Examples| oo o 14
[5.3.1 Simple Dish Search|. o oo oo 14
15.3.2 Complex Multi-Attribute Queryl 14
[5.3.3 Restaurant-Focused Query| 14

5.4 Two-Phase Scoring and Relevance Architecturel 15
[.4.1 Comprehensive Relevance Determination| 15
[9.4.2 Score Interpretation and Transparency|. 15

5.5 Query-Time Ranking Process| 0. 16
[5.5.1 Inter-Field Dynamics and Score Aggregation| 16
[9.5.2 Dynamic Ranking Strategies| oo 16
15.5.3 Example: Cross-Field Amplification in Action|. 17

5.6 Result Explanation and Transparency] 17
9.6.1 Comprehensive Match Breakdown| 17

[5.6.2 User-Facing Explanations| oL
I;i, 1 Iiﬁ!:ﬂlnnlﬂllda l],'QI],I
[6 Column Mapping Strategy|
[6.1 Semantic Column Groups|
[6.1.1 Cuisine and Origin Columns|,
[6.1.2 Taste and Flavor Columnsl.
[6.1.3 Service and Experience Columns|
6.1.4 Quality and Reputation Columns|.
6.2 Query Term Expansion Rules|
6.2.1 Cuisine Term Mappings|
6.2.2 Cooking Method Mappings|
6.2.3 Dietary Preference Mappings|
16.2.4 Ambiance and Experience Mappings|
[7 System Performance Characteristics|
[7.1 Retrieval Efficiency|
(7.2 Scalability Patterns|.
[7.2.1 Horizontal Scaling|
[7.2.2 Feature Space Management|
7.3 Quality Metrics and Monitoring|.
[8 System Advantages|
[8.1 Complete Explainability and Algorithmic Transparency|
[8.1.1 Comprehensive Traceability|
[8.1.2 Advanced Result Explanation Example]
[8.1.3 Business Intelligence Integration|
[8.1.4 Operator Debugging Capabilities|
[8.2 Tunable Business Logic] o
8.3 Hybrid Search Integration| oo
8.4 Multi-Level Entity Support|

19
19
19
19
19
19
19
19
20
20
20

20
20
20
20
20
21

9.1 Recommendation and Advanced Personalization| 23
9.2 Dynamic Content Adaptation| 24
9.3 Cross-Domain Applications| L L 24
9.3.1 E-commerce Product Searchl. 0. 24
9.3.2 Real Estate Discovery| 24
9.5.3 Healthcare Provider Searchl 0000 24
9.3.4 Educational Course Discovery|. oL, 24

9.4 Advanced Query Processing| 25
9.4.1 Natural Language Enhancement| 25
9.4.2 Multi-Modal Integration| oo oo 25

9.5 Model-Free Architecture Benefitsl oo oo 25
[9.5.1 Algorithmic Transparency Without ML Complexity|] 25
[9.5.2 Enhancement Through Optional Model Integration|. 26
9.5.3 Production Benefits oo o o 26
9.5.4 Competitive Advantages| L oL 26

(10 Conclusion| 27
(10.1 Core Architectural Innovations| 27
[10.2 Mathematical Sophistication Without Model Complexity|] 27
110.3 Production-Ready Scalability| 27
[10.4 Cross-Domain Applicability] o 27
10,5 Future-Proof Foundationl. oo 27

1 Abstract

This document describes a unified search and recommendation system using sparse vector representa-
tions where features are constructed as hierarchical column-value pairs with term-level decomposition.
The system employs a novel two-phase architecture separating intra-field scoring (index-time) from
inter-field ranking (query-time), enabling mathematically rigorous relevance determination without
machine learning model dependencies.

Through power law score distributions and cross-field amplification, the system achieves advanced
search capabilities for explicit queries while also enabling recommendation flows where user prefer-
ences act as implicit queries. This dual functionality provides complete algorithmic transparency
and explainability across complex hierarchical domain structures, positioning the architecture as a
foundation for both retrieval and personalization tasks.

2 Introduction

Modern search applications increasingly require sophisticated relevance determination across com-
plex, hierarchical data structures while maintaining complete transparency in ranking decisions.
Traditional approaches force difficult tradeoffs between mathematical sophistication and operational
interpretability, often resulting in either overly simplistic systems that miss nuanced relevance
patterns or complex machine learning architectures that sacrifice explainability for performance.

This document presents a novel sparse vector search architecture that resolves these tensions through
a carefully designed two-phase processing approach. By separating intra-field scoring concerns
(handled at index time) from inter-field ranking dynamics (processed at query time), the system
achieves sophisticated relevance determination through interpretable mathematical operations while
supporting dynamic customization and complete algorithmic transparency.

The architecture demonstrates that advanced search capabilities, including hierarchical entity
support, geographic constraints, cross-field amplification, and dynamic ranking strategies, can be
achieved through deterministic mathematical formulations rather than opaque machine learning
models, providing immediate deployment capabilities with clear paths for optional ML enhancement.

2.1 Problem Statement

Modern applications often require search across multi-level hierarchical data where entities exist at
different granularities (e.g., businesses — products, categories — items, zones — venues). Traditional
search approaches face several critical limitations:

e Dense embeddings lack interpretability and fine-grained control over ranking factors

e« BM25 full-text search misses semantic relationships, numerical features, and hierarchical
context

o« HNSW approximate nearest neighbor search sacrifices explainability for speed

e Machine learning ranking models introduce operational complexity, training dependencies,
and debugging difficulties

o Existing systems struggle with complex multi-level filtering requirements and cross-field
relevance patterns

e Linear scoring approaches fail to handle verbose metadata appropriately, leading to keyword
stuffing advantages

o Lack of transparent score decomposition prevents effective system tuning and user trust

o Traditional approaches also fail to effectively separate indexing-time optimizations from query-
time flexibility, resulting in either rigid systems that cannot adapt to dynamic requirements
or complex architectures that sacrifice interpretability for sophistication.

In parallel, recommendation systems face analogous challenges: lack of transparency in ranking logic,
over-reliance on opaque machine learning embeddings, and difficulty balancing personalization with
explainability. These challenges mirror those of search, suggesting the need for a unified framework
that can serve both paradigms.

2.2 Solution Overview

Our approach addresses these limitations through a novel two-phase sparse vector architecture that
separates indexing-time optimizations from query-time flexibility, achieving sophisticated relevance
determination while maintaining complete mathematical transparency.

2.2.1 Architectural Philosophy

The system employs sparse vector representations where each dimension corresponds to interpretable
features extracted from hierarchical entity metadata. Rather than relying on machine learning
models or complex heuristics, the system uses deterministic mathematical operations—power law
distributions and cross-field amplification—to achieve nuanced relevance scoring.

2.2.2 Key Innovation: Two-Phase Processing

¢ Index Time: Metadata fields are decomposed into individual terms with appropriate score
distribution to prevent verbosity bias

e Query Time: Cross-field relationships and dynamic ranking strategies determine final
relevance through transparent mathematical operations

2.2.3 Operational Benefits

The architecture enables efficient top-k retrieval across multi-level hierarchical entities while providing
complete explanations showing exactly which metadata fields contributed to each result’s relevance
score. This transparency supports both user understanding and system optimization without
sacrificing search sophistication.

The system handles complex entity hierarchies through structured feature prefixing (adaptable to
domain-specific requirements like geographic zones, categories, or organizational structures), enabling
powerful search capabilities that can be immediately deployed, easily tuned, and incrementally
enhanced with optional machine learning components as requirements evolve.

2.3 Search vs. Recommendation

Search and recommendation systems are often treated as distinct, but in practice they share a
common foundation: ranking entities according to relevance.

e Search: Explicit user queries drive retrieval. The system must map query terms to entity
features and return ranked results.

o Recommendation: Implicit signals (user preferences, history, demographics, context) act as
latent queries. The system must anticipate what is relevant without explicit input.

Our architecture unifies these paradigms. Both explicit queries and implicit preference vectors are
represented in the same sparse vector format, processed identically through intra-field scoring and
inter-field ranking. This makes the system equally suitable for powering traditional search engines
and modern recommendation engines.

3 System Architecture

3.1 Core Concepts
3.1.1 Sparse Vector Representation with Term Decomposition
Each entity is represented as a sparse vector where dimensions correspond to:

o Categorical features decomposed into individual terms with hierarchical prefixes

e Numerical features appropriately binned and weighted according to field characteristics
o Hierarchical identifiers enabling efficient filtering and partitioning

e Temporal features supporting time-aware relevance adjustments

o User preference alignments without requiring trained models

3.1.2 Hierarchical Column-Value-Term Format
Features follow a structured pattern enabling term-level matching:
e [hierarchy_prefix]--[column_name]--[individual_term]

This decomposition approach transforms traditional metadata: Example (Food Delivery Do-
main):

e zone_downtown--restaurant_name--taj

e zone_downtown--restaurant_name--palace

Example (E-commerce Domain):

e category_electronics--product_name--wireless

e category_electronics——-product_name—--headphones

Each term receives an individual score based on power law distribution within its source field,
enabling precise matching while preventing verbose descriptions from unfair advantages.

3.1.3 Multi-Level Entity Denormalization with Hierarchical Intelligence

Hierarchical entities are flattened into comprehensive searchable feature sets where:

o Each metadata field undergoes intelligent term decomposition
o Cross-field relationships are preserved through consistent term usage

o Hierarchical information provides context and filtering capabilities (e.g., geographic zones,
product categories, organizational units)

e Parent-child relationships are maintained through structured prefixing patterns

3.1.4 Two-Phase Processing Architecture

The system separates indexing concerns from query processing:

o Intra-Field Scoring (Index Time): Power law score distribution within individual fields

o Inter-Field Ranking (Query Time): Cross-field amplification and dynamic ranking
strategies

3.1.5 Multi-Level Entity Denormalization with Hierarchical Intelligence

Hierarchical entities are flattened into comprehensive searchable feature sets where:

o Each metadata field undergoes intelligent term decomposition
o Cross-field relationships are preserved through consistent term usage
e Zone information provides geographic context and filtering capabilities

o Hierarchical relationships (zone — business — product) are maintained through structured
prefixing

3.1.6 Mathematical Transparency Without Model Dependencies

All relevance calculations employ interpretable mathematical operations:

e Power law distributions with configurable parameters

e Linear algebra sparse vector operations

o Explicit amplification formulas based on term frequency patterns

e Deterministic aggregation rules enabling complete audit trails

This approach achieves sophisticated search capabilities while maintaining operational simplicity
and complete explainability.

3.2 Index Structure

The system maintains an inverted index structure where:

o Keys: Hierarchically-prefixed column-value-term features

e Values: Lists of entity identifiers with corresponding scores

o Metadata: Entity-level filters and hierarchical relationships

3.2.1 Two-Phase Processing Architecture

The system employs distinct scoring and ranking phases operating at different times with different

objectives:

1. Intra-Field Scoring (Index Time) At indexing time, each field undergoes decomposition and
scoring:

Meaningful terms extracted after stopword removal
Base score of 1.0 distributed among terms using power law scaling

Non-linear distribution: Sierm = (1.0/N®) where N is field term count and « controls
distribution steepness

Prevents verbose descriptions from receiving disproportionate weight

Currently implements naive equal weighting with power law adjustment

2. Inter-Field Ranking (Query Time) During query processing, cross-field dynamics determine
final relevance:

Inner product computation between query and entity sparse vectors
Individual component matches identified and collected
Field-level score adjustments via power law multipliers

Cross-field term frequency amplification (terms appearing in multiple fields receive
cumulative benefits)

Dynamic ranking strategy application based on query context, diversity requirements,
and field importance weighting

4 Feature Engineering
4.1 Column-Value Decomposition and Intra-Field Scoring

For each entity attribute, the system performs sophisticated term extraction and scoring:

4.1.1 Phase 1: Term Extraction

1. Stopword Removal: Filters domain-specific and common stopwords

[\)

. Term Splitting: Breaks compound values on delimiters and semantic boundaries

3. Normalization: Applies case folding and basic stemming where appropriate

W

. Quality Filtering: Removes overly generic or meaningless terms

4.1.2 Phase 2: Intra-Field Score Distribution

Each field’s base relevance score (1.0) is distributed among extracted terms using power law scaling:

Mathematical Formulation:

o For field with N terms: Sierm = (1.0/N?%) x boost__factor

Default o« = 0.7 (configurable per domain)
 Single-term fields: Full score (1.0)

e Multi-term fields: Diminishing returns prevent verbosity bias
Example Scoring:

o "Biryani" (1 term) — Score: 1.0
o 'Butter Chicken Curry" (3 terms) — Each term: 1.0 / 370.7 = 0.467

o "Traditional Hyderabadi Dum Biryani Recipe" (5 terms) — Each term: 1.0 / 570.7 = 0.315

This approach ensures concise, focused descriptions receive stronger individual term signals while
comprehensive descriptions maintain broad coverage with appropriate score distribution.

4.2 Hierarchical Feature Extraction
4.2.1 Level 1: Zone/Geographic Features

Geographic boundaries, landmarks, demographic characteristics, temporal patterns, and transporta-
tion accessibility are extracted and prefixed with zone identifiers.

10

4.2.2 Level 2: Business/Venue Features

Category classifications, service characteristics, quality indicators, and operational metadata are
processed into term-based features.

4.2.3 Level 3: Product/Item Features

Detailed attributes, specifications, availability, pricing, and interaction patterns are decomposed
into searchable terms.

4.3 Intra-Field Scoring Methodology
4.3.1 Power Law Distribution Rationale
The non-linear scoring distribution addresses several key challenges in hierarchical entity search:

1. Verbosity Bias Prevention Linear score splitting (1.0/N) would disadvantage concise, focused
metadata in favor of verbose descriptions. The power law approach (1.0/N%) provides
diminishing penalties for additional terms while maintaining meaningful distinctions.

2. Domain-Specific Tuning Different entity types and fields benefit from different distribution
parameters:

o Restaurant names: o = 0.5 (moderate penalty for compound names)
o Dish descriptions: a = 0.7 (stronger penalty for verbose descriptions)

o Signature dishes: a = 0.6 (balanced approach for list-type fields)

4.3.2 Scoring Algorithm Implementation

function calculate_intra_field_scores(field_value, field_type):
terms = extract_meaningful_terms(field_value)
alpha = get_alpha_for_field_type(field_type)
base_score 1.0
term_count = len(terms)

if term_count ==
return {terms[0]: base_score}

individual_score = base_score / (term_count ** alpha)
return {term: individual score for term in terms}

4.3.3 Field-Specific Considerations

o Identity Fields (restaurant_name, dish_name): Lower « values preserve distinctiveness
o Descriptive Fields (description, story): Higher « values prevent keyword stuffing

o List Fields (signature_ dishes, cuisines): Moderate a values balance coverage and focus

11

5 Food Delivery Application Example

5.1 Entity Hierarchy
5.1.1 Zones (Level 1) - Domain-Specific Implementation

Geographic partitions containing restaurants and defining delivery boundaries, with attributes like
major landmarks, demographic profiles, and peak ordering patterns.

Note: Zone prefizing represents one implementation approach for geographic filtering - the core
architecture supports any hierarchical partitioning scheme.

5.1.2 Restaurants (Level 2)

Business entities with comprehensive metadata including identity information, location details,
cuisine classifications, service capabilities, and quality indicators.

5.1.3 Dishes (Level 3)

Product-level entities with detailed attributes covering taste profiles, nutritional information,
preparation methods, cultural context, and availability.

5.2 Feature Representation Examples
5.2.1 Restaurant Metadata Processing

Original Data:

e restaurant_name: "Taj Palace Restaurant"
e primary_ cuisine: "North Indian"

o regional specialization: "Delhi Style Authentic Cooking'

o signature dishes: ["Butter Chicken", "Dal Makhani']
Generated Features:

e zone_downtown--restaurant_name--taj

e zone_downtown--restaurant_name--palace

e zone_downtown--primary_cuisine--north

e zone_downtown--primary_cuisine--indian

e zone_downtown--regional_specialization--delhi

e zone_downtown--regional_specialization--style

12

e zone_downtown--regional_specialization--authentic
e zone_downtown--regional_specialization--cooking

e zone_downtown--signature_dishes—-butter

e zone_downtown--signature_dishes--chicken

e zone_downtown--signature_dishes--dal

e zone_downtown--signature_dishes--makhani

Note: The "zone__downtown" prefix represents domain-specific geographic filtering. Other domains
might use prefizes like "category _electronics”, "department__menswear”, or "location__building a’.

5.2.2 Dish Metadata Processing

Original Data:

o dish_ name: "Butter Chicken Curry"
o dominant_flavors: ["Creamy Tomato Sauce', "Rich Buttery Taste"]

e cooking method: "Tandoor Grilled Chicken"
Generated Features:

e zone_downtown--dish_name--butter

e zone_downtown--dish_name--chicken

e zone_downtown--dish_name--curry

e zone_downtown--dominant_flavors--creamy
e zone_downtown--dominant_flavors—--tomato
e zone_downtown—-—-dominant_flavors—--sauce
e zone_downtown--dominant_flavors—--rich

e zone_downtown--dominant_flavors--buttery
e zone_downtown--dominant_flavors—--taste
e zone_downtown--cooking_method--tandoor
e zone_downtown--cooking_method--grilled

e zone_downtown--cooking_method--chicken

13

5.3 Query Processing Examples
5.3.1 Simple Dish Search

Query: "butter chicken"

Query Vector Generated:
e current_zone--dish_name--butter
e current_zone--dish_name--chicken
e current_zone--signature_dishes--butter
e current_zone--signature_dishes--chicken
e current_zone--main_protein--chicken

e current_zone--cooking _method--chicken

The system automatically expands "butter" and "chicken" to relevant columns where these terms
might appear, enabling comprehensive matching across the entity hierarchy.

5.3.2 Complex Multi-Attribute Query

Query: "spicy north indian curry with creamy sauce"
Query Processing:
e "spicy" — expands to spice_level, dominant_ flavors, taste profile
e "north" — expands to regional specialization, cuisine_ origin
e "indian" — expands to primary_ cuisine, secondary_ cuisines, cuisine_ origin
e "curry' — expands to cooking method, dish_ category, dish_ name
e "creamy" — expands to dominant_ flavors, texture_ profile, sauce_ type

e "sauce" — expands to dominant_ flavors, preparation_ style, dish_ components

5.3.3 Restaurant-Focused Query

Query: "family restaurant with outdoor seating and kids menu"
Term Expansion:
o '"family" — service_style, target_ demographic, ambiance
e "outdoor" — seating options, venue_ features, dining environment
o "seating" — capacity_ features, venue_ layout, service_ options
e 'kids" — menu_ options, special_services, family features

e "menu" — menu_ categories, special_ offerings, service_ options

14

5.4 Two-Phase Scoring and Relevance Architecture
5.4.1 Comprehensive Relevance Determination

The system calculates final entity relevance through a sophisticated two-phase process that separates
concerns between index-time optimization and query-time flexibility:

Phase 1: Intra-Field Scoring (Index Time)

Each entity field undergoes independent term extraction and scoring:

e Meaningful term identification with stopword filtering
e Power law score distribution within each field
o Field-specific parameterization for optimal term weighting

o Persistent storage in sparse vector format

Phase 2: Inter-Field Ranking (Query Time)

Query processing aggregates field-level matches with dynamic enhancements:

e Sparse vector inner product computation for baseline matching

Cross-field term frequency amplification for comprehensive coverage
e Dynamic field importance weighting based on query context

o Configurable ranking strategies for business objectives

5.4.2 Score Interpretation and Transparency

Every relevance score decomposes into traceable components:

¢ Individual field contributions with specific term matches
e Cross-field amplification factors and their mathematical basis
e Dynamic adjustments and their triggering conditions

o Complete audit trail from query terms to final ranking

This architecture enables sophisticated relevance determination while maintaining complete ex-
plainability and supporting dynamic optimization strategies without requiring machine learning
models.

15

5.5 Query-Time Ranking Process
5.5.1 Inter-Field Dynamics and Score Aggregation

Query processing leverages cross-field term patterns to enhance relevance through sophisticated
aggregation:

1. Cross-Field Amplification Terms appearing across multiple entity fields receive cumulative
scoring benefits:

e Base match score from intra-field scoring
e Cross-field frequency multiplier: M = (n?ields) where 3 controls amplification strength

e Default § = 0.8 provides moderate amplification without excessive dominance

2. Mathematical Formulation For query term t matching entity e across multiple fields:
Total Score(t,e) = 3 (field score(t, f) x field weight(f) x cross_ field multiplier(t,e))

where:

o field_score(t, f) = intra-field score from indexing phase
o field weight(f) = dynamic field importance (default 1.0, adjustable at query time)
o cross_ field_multiplier(t,e) = (field.ount(t,e)’)

5.5.2 Dynamic Ranking Strategies

The system supports query-time strategy adjustments:

1. Diversity-Enhanced Ranking

o Apply diminishing returns for entities from same restaurant/category
e Boost underrepresented entity types in result set

e Geographic distribution balancing across zones
2. Field Importance Weighting

e Promotional content boosting for business objectives
o Seasonal relevance adjustments (breakfast items in morning queries)

o User preference integration without model dependency
3. Context-Aware Adjustments

o Time-of-day relevance modifications
e Geographic proximity enhancements

e Historical query pattern influences

16

5.5.3 Example: Cross-Field Amplification in Action
Query: "biryani" Entity: Biryani dish from "Biryani Bowl"
Field Matches:

o dish_name: "biryani" (intra-field score: 1.0, appears in 1 field)

o restaurant_name: "biryani bowl" — "biryani" (intra-field score: 0.707, appears in 2 fields
total)

o signature_ dishes: "biryani specialties" — "biryani" (intra-field score: 0.794, appears in 3 fields
total)

Cross-Field Multipliers:

e Field count for "biryani": 8 fields
o Multiplier: 870.8 = 5.278

Aggregated Score: Each field’s contribution multiplied by cross-field amplification results in
strong relevance signal for terms with broad entity coverage.

5.6 Result Explanation and Transparency
5.6.1 Comprehensive Match Breakdown

The system provides complete visibility into ranking decisions through detailed match explanations:

1. Example: Biryani Query Result

Query: "fine dine hyderabadi biryani"
Result: Biryani from ’Biryani Bowl’ (Total Score: 46.3346)

Field-Level Match Analysis:

- dish_name: "biryani" (6.809)
- Term score: 1.0 (single term)
- Cross-field multiplier: 6.809 (appears in 8+ fields)
- Field weight: 1.0 (default)

- restaurant_name: "biryani" (3.891)
- Term score: 0.707 (from "biryani bowl", 2 terms)
- Cross-field multiplier: 5.506
- Field weight: 1.0

- description: "hyderabadi" (0.9624), "biryani" (2.162)

- "hyderabadi": 0.467 base x 2.06 multiplier
- "biryani": 0.467 base x 4.63 multiplier

17

- regional_specialization: "biryani" (3.891)

- signature_dishes: "biryani" (1.837)

- chef_owner_background: "biryani" (2.81)

- social_context: "fine" (0.9949), "dine" (0.9949)

- restaurant_availability: "fine" (0.9949), "dine" (0.9949)

[Additional matches across 15+ fields...]

2. Explanation Components Each match provides:

o Field Context: Which metadata field contained the match
e Term Score: Intra-field scoring from index time

o Amplification: Cross-field frequency impact

o Field Weight: Any dynamic importance adjustments

e Final Contribution: Mathematical product of all factors

5.6.2 User-Facing Explanations

For end users, explanations emphasize:

o Primary match reasons ("matched dish name")

o Supporting evidence ("also found in restaurant name, specialization")

Quality indicators ("appears across multiple authoritative fields")

» Relevance confidence ("strong match with 8+ field confirmations")

This transparency enables users to understand result quality while providing operators with detailed
tuning insights.

5.7 Recommendation

Beyond explicit query handling, the system also supports recommendation flows. For instance,
given a user’s historical preference for “North Indian dishes” and “family dining,” the system can
construct an implicit query vector from stored preference terms. Candidate entities are then ranked
using the same two-phase scoring process: intra-field decomposition for entity features, followed by
inter-field amplification and dynamic weighting.

This demonstrates that the architecture powers both active search (explicit queries like “butter
chicken near me”) and passive recommendation (implicit user preference vectors), without requiring
separate pipelines.

18

6 Column Mapping Strategy

6.1 Semantic Column Groups
6.1.1 Cuisine and Origin Columns
e primary_ cuisine, secondary_ cuisines, cuisine origin

e regional specialization, cultural_ significance

o traditional methods, authenticity indicators

6.1.2 Taste and Flavor Columns

e spice_level, dominant_ flavors, flavor__intensity
e taste_profile, signature_ spices, aroma,_ characteristics

o texture_ profile, temperature_ characteristics

6.1.3 Service and Experience Columns

e service_style, dining experience, ambiance
e seating options, venue_ features, accessibility

e special_services, accommodation_ options

6.1.4 Quality and Reputation Columns
e quality_ indicators, awards_ recognition, ratings
e chef credentials, establishment_ history, certifications

e customer_ feedback, review__highlights

6.2 Query Term Expansion Rules

The system maintains mappings between query terms and relevant column groups. When processing
queries, terms are expanded to search across semantically related columns, ensuring comprehensive
coverage while maintaining relevance.

6.2.1 Cuisine Term Mappings

n n

Terms like "italian", "chinese", "indian" expand to cuisine classification columns, regional specialization
fields, and cultural significance attributes.

19

6.2.2 Cooking Method Mappings

Terms like "grilled", "fried", "steamed" map to cooking method columns, preparation style fields,
and equipment-related attributes.

6.2.3 Dietary Preference Mappings

Terms like "vegetarian", "vegan", "gluten-free" expand to dietary classification columns, ingredient
information, and special menu categories.

6.2.4 Ambiance and Experience Mappings

Terms like "casual", "fine-dining", "family-friendly" map to service style, ambiance descriptors, and
target demographic fields.

7 System Performance Characteristics

7.1 Retrieval Efficiency

The sparse vector approach with zone prefixing enables efficient retrieval through:

Geographic partitioning reduces search space

e Sparse representation minimizes computational overhead

Inverted index structure supports fast term lookup

Parallel processing across zone boundaries

7.2 Scalability Patterns
7.2.1 Horizontal Scaling

e Zone-based data partitioning
o Independent index management per geographic region

o Distributed query processing with result aggregation

7.2.2 Feature Space Management

« Efficient sparse vector storage
o Term-based indexing reduces dimensionality impact

e Dynamic feature space expansion without reindexing

20

7.3 Quality Metrics and Monitoring

e Precision and recall measurements across query types
e Response time monitoring for different complexity levels
e Feature utilization analysis for optimization opportunities

e Geographic coverage and result distribution tracking

8 System Advantages

8.1 Complete Explainability and Algorithmic Transparency
8.1.1 Comprehensive Traceability

Every ranking decision provides complete mathematical and logical traceability through the two-
phase architecture:

1. Index-Time Decisions

Field decomposition choices and their rationale

Stopword filtering rules and domain-specific adjustments

Power law parameter selection and field-specific tuning

Term extraction quality and completeness metrics
2. Query-Time Calculations

Inner product computation with exact term matches

Cross-field amplification mathematical formulation

Dynamic weighting decisions and triggering conditions

Score aggregation with complete audit trail

8.1.2 Advanced Result Explanation Example

Query: "authentic hyderabadi biryani fine dining"
Top Result: Royal Biryani House - Hyderabadi Special (Score: 78.42)

Detailed Match Breakdown:

Primary Matches:

- dish_name: "biryani" (8.34) - Exact match, single term

- authenticity_indicators: "authentic" (6.12) - High-confidence match
- regional_specialization: "hyderabadi" (7.89) - Exact regional match

Supporting Evidence:
- restaurant_name: "biryani" (4.56) - Reinforces primary topic

21

- chef_credentials: "hyderabadi" (3.44) - Expertise confirmation
- signature_dishes: "biryani" (2.78) - Menu specialization
- service_style: "fine" (1.89), "dining" (1.89) - Ambiance match

Cross-Field Amplification Analysis:

- "biryani": 9 field occurrences -+ 6.2x multiplier

- "hyderabadi": 6 field occurrences - 4.1x multiplier
- "authentic": 4 field occurrences -+ 2.8x multiplier

Quality Indicators:

- High field coverage (12/18 metadata fields matched)

- Strong cross-field consistency

- Authoritative source confirmation (chef credentials)

- Multi-dimensional relevance (dish + restaurant + service)

8.1.3 Business Intelligence Integration

The explainability framework supports:

o A/B testing of ranking parameter adjustments
e Performance analysis across different query patterns
e Quality assurance for metadata completeness

o User experience optimization through explanation clarity

8.1.4 Operator Debugging Capabilities

Technical teams receive:

o Mathematical step-by-step score calculations
e Parameter sensitivity analysis

e Field contribution histograms

e Query-result alignment metrics

¢ Performance bottleneck identification

This comprehensive explainability enables continuous system improvement while maintaining user
trust through transparent result reasoning.

22

8.2 Tunable Business Logic

Individual feature weights adjustable
e Column mapping rules customizable
o Geographic zone priorities configurable

e Promotional boost integration straightforward

8.3 Hybrid Search Integration

The architecture easily incorporates complementary search approaches:

e Dense embeddings for semantic similarity enhancement
o BM25 integration for free-text content matching

e Collaborative filtering for personalization layers

This hybridization not only strengthens search quality but also enables personalized recom-
mendation pipelines. Collaborative filtering or dense embeddings can be injected as preference
signals into the same sparse vector framework, allowing search and recommendation to operate
seamlessly within a single architecture.

8.4 Multi-Level Entity Support

Handles complex hierarchical relationships naturally:

o Zone-level filtering and preferences
o Business-level quality and service indicators
e Product-level detailed specifications and availability

e Cross-level attribute inheritance and propagation

9 Extensions and Future Directions

9.1 Recommendation and Advanced Personalization

This represents the recommendation dimension of the system. By treating user preferences, tem-
poral patterns, and demographic signals as implicit queries, the architecture naturally extends to
personalization. Ranking logic remains transparent and explainable, as implicit queries undergo the
same intra-field and inter-field scoring process as explicit queries.

Possible enhancements include:

o Learning user preference distributions from historical interaction vectors
o Incorporating contextual features (time-of-day, location, seasonality)

e Demographic-based customization integrated into sparse vector fields

23

9.2 Dynamic Content Adaptation

o Seasonal menu and availability integration
e Real-time inventory consideration
e Promotional content weighting

o Event-based feature enhancement

9.3 Cross-Domain Applications

The core two-phase architecture adapts to various hierarchical structures:

9.3.1 E-commerce Product Search

e Hierarchy: Categories — Brands — Products
o Prefix Pattern: category_electronics--brand_sony--product_name--wireless

e Category hierarchies with brand and product specifications, handling complex attribute spaces
and user preference integration.

9.3.2 Real Estate Discovery

o Hierarchy: Regions — Neighborhoods — Properties
o Prefix Pattern: region_downtown--neighborhood_arts--property_type--condo

e Property search across geographic regions with detailed amenity and feature matching, sup-
porting location-based filtering and preference learning.

9.3.3 Healthcare Provider Search

o Hierarchy: Health Systems — Facilities — Providers
o Prefix Pattern: system_mayo--facility_rochester--specialty_cardiology

e Medical specialty hierarchies with provider credentials and service offerings, enabling precise
matching while maintaining privacy requirements.

9.3.4 Educational Course Discovery

e Hierarchy: Institutions — Departments — Courses
o Prefix Pattern: university_stanford--department_cs--course_level--advanced

o Academic institution and program hierarchies with detailed curriculum and prerequisite
matching, supporting student profile alignment.

24

9.4 Advanced Query Processing
9.4.1 Natural Language Enhancement

e Query intent recognition and expansion
o Contextual term disambiguation
o Conversational query handling

e Multi-turn search session support

9.4.2 Multi-Modal Integration

o Image-based search integration
e Voice query processing
o Visual preference learning

o Cross-modal result presentation

9.5 Model-Free Architecture Benefits
9.5.1 Algorithmic Transparency Without ML Complexity

The system achieves sophisticated relevance determination through interpretable mathematical
operations rather than opaque machine learning models:

1. Direct Mathematical Relationships

e Power law distributions with configurable parameters
o Linear algebra operations (sparse vector inner products)
o Explicit cross-field amplification formulas

e Deterministic score aggregation rules
2. Operational Advantages

e No model training or retraining requirements
o Immediate parameter adjustment effects
o Predictable behavior under load

o Complete audit trail for compliance requirements

25

9.5.2 Enhancement Through Optional Model Integration
While the core system operates model-free, it provides ideal foundation for ML enhancements:

1. Re-Ranking Model Integration

function enhanced_search(query, base_results):
Core sparse vector results (model-free)
candidates = sparse_vector_search(query, 1imit=100)

Optional ML enhancement

if use_reranking model:
enhanced_results = reranking model.score(query, candidates)
return merge_scores(candidates, enhanced_results, alpha=0.3)

return candidates

2. Personalization Layer Options

e User embedding models for preference learning
e Session-based recommendation models
o Geographic preference pattern models

e Temporal behavior prediction models

9.5.3 Production Benefits
The model-free foundation provides:

e Immediate Deployment: No training data collection or model development delays
e Consistent Performance: Predictable latency and throughput characteristics
« Easy Debugging: Mathematical operations enable straightforward troubleshooting

¢ Incremental Enhancement: ML models can be added as performance improvements rather
than core dependencies

9.5.4 Competitive Advantages

o Rapid iteration on ranking strategies without retraining delays
o Complete explainability for regulated industries

e Lower operational complexity and maintenance overhead

o Deterministic behavior enabling reliable A/B testing

This architecture delivers production-ready search capabilities immediately while providing clear
paths for ML-enhanced sophistication as requirements evolve.

26

10 Conclusion

This multi-level hierarchical sparse vector search system provides a sophisticated yet interpretable
foundation for applications requiring explainable, tunable, and efficient search across complex entity
relationships. The system’s innovative two-phase architecture separates intra-field scoring concerns
from inter-field ranking dynamics, enabling both mathematical rigor and operational flexibility.

10.1 Core Architectural Innovations

The zone-prefixed column-value approach with term-based decomposition creates a powerful indexing
strategy where meaningful terms receive appropriate weight distribution through power law scaling.
This prevents verbose descriptions from dominating results while ensuring comprehensive coverage
across entity hierarchies. The separation of scoring (index-time, intra-field) and ranking (query-time,
inter-field) phases enables sophisticated relevance determination without sacrificing transparency.

10.2 Mathematical Sophistication Without Model Complexity

The system achieves advanced search capabilities through interpretable mathematical operations
rather than opaque machine learning models. Power law distributions, cross-field amplification,
and dynamic ranking strategies provide sophisticated relevance signals while maintaining complete
explainability. Every ranking decision traces back to specific mathematical formulations and term
matches, enabling both user understanding and operational debugging.

10.3 Production-Ready Scalability

The food delivery example demonstrates the system’s capability to handle rich metadata hierarchies,
geographic constraints, and diverse query patterns while providing consistent performance and
detailed result explanations. The architecture’s model-free foundation enables immediate deployment
and rapid iteration, while providing clear integration paths for ML enhancements like re-ranking
models and personalization layers.

10.4 Cross-Domain Applicability

The system’s strength lies in its balance of sophistication and interpretability, making it suitable
for various domains requiring hierarchical entity search with geographic or categorical partitioning.
From e-commerce product discovery to healthcare provider search, the architecture adapts to
different entity hierarchies while maintaining consistent explanation quality and tuning capabilities.

10.5 Future-Proof Foundation

The two-phase architecture provides a robust foundation that delivers sophisticated search capabilities
immediately while supporting incremental enhancement through optional model integration. This
approach enables organizations to deploy effective search systems quickly, iterate on ranking strategies
without training delays, and gradually introduce ML sophistication as requirements evolve, all while
maintaining the complete explainability that modern applications demand.

27

The system represents a significant advancement in interpretable search architecture, proving that
sophisticated relevance determination and mathematical rigor can coexist with operational simplicity
and user transparency.

28

	Abstract
	Introduction
	Problem Statement
	Solution Overview
	Architectural Philosophy
	Key Innovation: Two-Phase Processing
	Operational Benefits

	Search vs. Recommendation

	System Architecture
	Core Concepts
	Sparse Vector Representation with Term Decomposition
	Hierarchical Column-Value-Term Format
	Multi-Level Entity Denormalization with Hierarchical Intelligence
	Two-Phase Processing Architecture
	Multi-Level Entity Denormalization with Hierarchical Intelligence
	Mathematical Transparency Without Model Dependencies

	Index Structure
	Two-Phase Processing Architecture

	Feature Engineering
	Column-Value Decomposition and Intra-Field Scoring
	Phase 1: Term Extraction
	Phase 2: Intra-Field Score Distribution

	Hierarchical Feature Extraction
	Level 1: Zone/Geographic Features
	Level 2: Business/Venue Features
	Level 3: Product/Item Features

	Intra-Field Scoring Methodology
	Power Law Distribution Rationale
	Scoring Algorithm Implementation
	Field-Specific Considerations

	Food Delivery Application Example
	Entity Hierarchy
	Zones (Level 1) - Domain-Specific Implementation
	Restaurants (Level 2)
	Dishes (Level 3)

	Feature Representation Examples
	Restaurant Metadata Processing
	Dish Metadata Processing

	Query Processing Examples
	Simple Dish Search
	Complex Multi-Attribute Query
	Restaurant-Focused Query

	Two-Phase Scoring and Relevance Architecture
	Comprehensive Relevance Determination
	Score Interpretation and Transparency

	Query-Time Ranking Process
	Inter-Field Dynamics and Score Aggregation
	Dynamic Ranking Strategies
	Example: Cross-Field Amplification in Action

	Result Explanation and Transparency
	Comprehensive Match Breakdown
	User-Facing Explanations

	Recommendation

	Column Mapping Strategy
	Semantic Column Groups
	Cuisine and Origin Columns
	Taste and Flavor Columns
	Service and Experience Columns
	Quality and Reputation Columns

	Query Term Expansion Rules
	Cuisine Term Mappings
	Cooking Method Mappings
	Dietary Preference Mappings
	Ambiance and Experience Mappings

	System Performance Characteristics
	Retrieval Efficiency
	Scalability Patterns
	Horizontal Scaling
	Feature Space Management

	Quality Metrics and Monitoring

	System Advantages
	Complete Explainability and Algorithmic Transparency
	Comprehensive Traceability
	Advanced Result Explanation Example
	Business Intelligence Integration
	Operator Debugging Capabilities

	Tunable Business Logic
	Hybrid Search Integration
	Multi-Level Entity Support

	Extensions and Future Directions
	Recommendation and Advanced Personalization
	Dynamic Content Adaptation
	Cross-Domain Applications
	E-commerce Product Search
	Real Estate Discovery
	Healthcare Provider Search
	Educational Course Discovery

	Advanced Query Processing
	Natural Language Enhancement
	Multi-Modal Integration

	Model-Free Architecture Benefits
	Algorithmic Transparency Without ML Complexity
	Enhancement Through Optional Model Integration
	Production Benefits
	Competitive Advantages

	Conclusion
	Core Architectural Innovations
	Mathematical Sophistication Without Model Complexity
	Production-Ready Scalability
	Cross-Domain Applicability
	Future-Proof Foundation

